当前位置:首页 > 新闻动态
超高分子量聚乙烯材料的研究进展(一)
超高分子量聚乙烯 (UHMWPE) 一般指黏均分子量在100万以上的线性长链聚乙烯材料,具有高强度、耐冲击、耐磨损、自润滑、耐化学腐蚀、耐低温等优异性能,主要制品有纤维、薄膜、管材、板材、棒材、多孔材和异型材等,广泛用于航空航天、国防军工、海洋工程、轨道交通、市政建设、石油化工、矿山冶金电力、新能源材料等领域。
近年,由于UHMWPE催化、聚合工艺技术的提升,产品质量逐步可调可控;同时UHMWPE加工各种制品的能力也不断改进、创新,下游的应用领域和数量逐年提高。
本文系统介绍了UHMWPE催化聚合以及下游纤维、隔膜、管材、型材等制品的加工、应用和发展趋势。要说明的是,文中涉及的UHMWPE也包括分子量在100万以下的树脂及制品,这类材料与分子量在100万以上的树脂及制品具有类似的优异性能和加工方法。同时,那些以UHMWPE为基材,进行物理、化学改性的树脂及下游制品材料均为本文讨论的范围。

1 UHMWPE树脂的催化聚合
1.1 催化技术用于UHMWPE聚合的催化剂按照不同的发展阶段分为三类:Ziegler-Natta (Z-N) 催化剂、茂金属催化剂和非茂过渡金属催化剂。
(1)Z-N催化剂Z-N催化剂具有制备简单、成本低、对杂质敏感性低等优点,是目前国内外 工业化制备UHMWPE应用催化剂,用于生产板材、管材、纤维、电池隔膜、人工关节等各种类型专用树脂。
其发展经历了仅由主催化剂(卤化钛)与助催化剂(烷基铝)组成的双组分催化剂(一代催化剂)、添加了第三组分给电子体路易斯碱(第二代催化剂)、使用了结构高度无序MgCl 2 载体 (第三代催化剂),其催化活性不断提高,催化乙烯聚合活性已经超过100000g PE/g cat。
近年来,为提高Z-N催化剂在生产UHMWPE上的催化性能,研究方向主要是在催化剂载体结构的优化、给电子体的优选以及载钛量和钛分布的调节上。
目前,美国Celanese、日本三井油化、巴西 Braskem、荷兰DSM、韩国油化等国际公司以及包括上海化工研究院有限公司在内的国内树脂生产企业均采用Z-N催化剂为主生产UHMWPE树脂。
尽管现阶段Z-N催化剂在UHMWPE树脂产业中仍然发挥着主导作用,然而存在一定的局限性:
①Z-N催化剂具有多活性中心特点,所得聚合物分子量分布较宽,影响树脂的力学性能提升;②Z-N催化剂对共聚单体的响应性偏低,共聚能力欠佳,聚合物微观结构不易调控。因此,Z-N催化剂在开发更高性能、高功能的 UHMWPE 树脂方面受到限制。
(2)茂金属催化剂针对Z-N催化剂体系的不足,在研究烯烃聚合过程机理的同时,茂金属催化剂得以问世。茂金属催化剂骨架含有至少一个环戊二烯基 (Cp) 或其衍生物的配体,金属中心是以ⅣB族过渡金属(如Ti、Zr、Hf)元素为主。
茂金属催化剂具有以下优点:①茂金属催化剂的催化活性更高;②茂金属催化剂为真正意义上的单活性中心催化剂,所得聚合物的分子量分布具有单分散特点,能够制备窄分子量分布的聚合物,从而赋予产品更高的力学性能;③茂金属催化剂具有优异的共聚合能力,对α-单体的共聚能力高,能够开发出性能更为优异的聚烯烃新材料。
以助催化剂MAO的发现为标志,茂金属催化剂加速蓬勃发展,目前已经投入商业化生产HDPE和LLDPE。Exxon Mobil、Dow、UCC、BP和三井化学等跨国企业在全球范围内处于技术领先地位,但还未有茂金属催化剂用于工业化生产UHMWPE的报道。
主要原因是:①茂金属催化乙烯聚合过程中β—H链消除反应概率较高,所制备的聚乙烯分子量偏低,通常黏均分子量不超过100万;②茂金属催化剂的成本、负载化以及知识产权等问题尚未完全解决。商业化茂金属聚乙烯分子量适中、分子量分布窄、短支链均匀,在透明性、拉伸强度、冲击性能、热封温度、热黏性和耐穿刺等方面优于传统聚乙烯,产品主要用于高端包装薄膜、运输管道以及中强纤维材料等。
(3)非茂过渡金属催化剂非茂过渡金属催化剂不含环戊二烯基,配体是含有氧、氮、硫和磷等配位原子的有机基团,中心金属包括所有的过渡金属元素。
与茂金属相比,非茂催化剂不但保持了茂金属催化剂的所有优点,还有其独特的优势:①非茂类配体的合成更为简单,成本相对较低,其价格仅为茂金属催化剂的1/10;②骨架易于修饰,配体灵活,容易在位阻效应和电子效应方面对催化剂进行修饰,可实现分子的自由设计;③对杂原子基团耐受性更强,具有活性聚合特征和良好的极性单体共聚能力,可定制聚合物的性能。
因此,非茂过渡金属催化剂具有广阔的应用前景,世界各大石油化学公司在非茂催化剂的研究和开发方面投入了大量的人力、财力,目前已在实验室规模取得一定突破,但核心的负载化过程还未解决,距离批量应用还有一段距离。
近年来,本文作者课题组在非茂络合物结构优化、均相催化乙烯聚合、催化剂负载化和负载型催化剂制备高性能UHMWPE等方面做了一系列基础研究和应用开发,目标是实现非茂催化剂在工业生产装置中的应用。表1列出不同类型催化剂在结构特征、催化机理以及性能优缺点等方面的对比情况。


1.2 聚合技术乙烯聚合主要有高压聚合、气相聚合、淤浆聚合与溶液聚合等工艺,目前生产UHMWPE树脂的工业装置大多采用淤浆聚合,淤浆工艺主要包括搅拌釜工艺与环管工艺。
(1)釜式聚合工艺釜式聚合包括 Hostalen 工艺和三井 CX 工艺,目前绝大多数的UHMWPE聚合采用Hostalen搅拌釜工艺。此工艺是由德国 Hoechst 公司 (现Basell公司)为高密度聚乙烯所开发,它可通过串联或并联生产出单峰或双峰的 HDPE 产品。
而UHMWPE和HDPE淤浆工艺主要的差别还是在工艺条件的优化、助催化剂/钛含量的配比上。Hostalen工艺流程包括两个反应器,在一反应器中加入乙烯、氢气和催化剂,生产较高熔融指数的树脂,得到的聚合物浆液进入第二反应器,在第二反应器中完成剩余乙烯的聚合反应。
随后,聚合物浆液进入干燥单元进行干燥处理。该工艺装置的操作压力和操作温度低、操作弹性高、生产灵活且稳定性较好,而且使用该工艺,催化剂耐杂质能力强,对乙烯气原料的纯度要求低。
目前全球超过三分之二的 UHMWPE 聚合采用 Hostalen 釜式工艺。CX 工艺装置包含原料精制、催化剂配制、进料、产品输送、储存、己烷回收和公用工程等单元。
乙烯、氢气等原料先从反应器底部鼓入反应器的己烷中,开启搅拌以实现原料的充分混合,用己烷将催化剂和助催化剂送入反应器内,从离心机分离出的母液和冷凝回收的己烷也一并加至反应器。
随着催化剂的不断注入,乙烯聚合生成聚合物并形成一定浓度的淤浆溶液。与Hostalen工艺相比,CX工艺聚合反应热由釜内聚合介质的蒸发、夹套水的冷却和进料气、液两相物流热焓的增加带走,其中使用己烷的挥发潜热来撤除聚合反应热是CX工艺的主要撤热方式,撤除总聚合反应热的50%以上,而且聚合反应热越多,需要气化的己烷量越大。这种独特的撤热方式限制了该工艺的单线生产能力。
(2)环管聚合工艺环管工艺主要有Phillips公司的Phillips单环管工艺和Ineos公司的InnoveneS双环管工艺。这两种工艺均采用异丁烷为反应介质。环管工艺不同于Hostalen工艺和CX工艺的釜式搅拌,其物料依靠轴流泵的推动在环管中高速流动来撤除聚合反应热。
Phillips公司利用改性后的二氧化硅或氧化铝固定催化剂来生产UHMWPE,聚合中不需要加入氢气,投资少,但对催化剂的要求较高。InnoveneS 工艺也较成熟,布局紧凑,产品质量控制稳定,特点是物料停留时间短,牌号切换快,切换牌号的过渡时间通常小于4h,因此需要对反应器的温度精确控制。
由于该工艺一般使用低沸点的异丁烷为聚合介质,溶解在介质中的低聚物含量低,介质中需要脱除的低分子量聚乙烯少,有利于装置长周期运行 。表2列出不同聚合工艺在流程、优缺点等方面的对比情况。

2 UHMWPE纤维
UHMWPE 纤维是目前已工业化纤维材料中比强度和防弹性能高的纤维。其纺丝工艺根据使用溶剂及脱除方式不同,可分为干法路线和湿法路线,目前国内外可生产不同旦数、纤维强度 17~43cN/dtex 的高、中、低端纤维产品。而随着树脂聚合技术及螺杆挤出技术的提升,科技人员对 UHMWPE 树脂的大分子链解缠能力获得提高,熔融纺丝技术用于制备中等以上强度(强度≥10cN/dtex)的UHMWPE纤维受到越来越多的关注。
分享到:
点击次数:785  更新时间:2022-04-26  【打印此页】  【关闭