当前位置:首页 > 新闻动态
超高分子量聚乙烯材料的研究进展(二)


2 UHMWPE纤维


UHMWPE 纤维是目前已工业化纤维材料中比强度和防弹性能高的纤维。其纺丝工艺根据使用溶剂及脱除方式不同,可分为干法路线和湿法路线,目前国内外可生产不同旦数、纤维强度 17~43cN/dtex 的高、中、低端纤维产品。
而随着树脂聚合技术及螺杆挤出技术的提升,科技人员对 UHMWPE 树脂的大分子链解缠能力获得提高,熔融纺丝技术用于制备中等以上强度(强度≥10cN/dtex)的UHMWPE纤维受到越来越多的关注。


2.1 干法路线纺丝
(1)工艺特点
干法路线制备UHMWPE纤维如图1所示。主要以十氢化萘为纺丝溶剂,与UHMWPE树脂混合后,经过双螺杆挤出机高温混炼、喷丝板挤出成熔体细流,通过惰性气体等方式吹扫使溶剂脱去,同时熔体固化成原纤可收卷成型。原纤再经过多级多次的超倍热拉伸可得到强度较高的UHMWPE纤维。
图片


相较于湿法路线纺丝,干法路线工艺流程短、经济环保,其制备的纤维表面平整、缺陷少、柔软、结晶度高、纤维密度大、熔点高、熔程短、溶剂残留低。


(2)国内外新研究进展
干法路线以荷兰 DSM 公司为代表,生产的Dyneema系列纤维针对不同的应用领域,力学性能优良,产品质量稳定。


据报道,Dyneema ® SK99纤维断裂强度可达到43cN/dtex,比SK78高15%~20%。除此之外还有功能型纤维,如抗蠕变纤维Dyneema-20,其蠕变率比常规的UHMWPE纤维降低100%;高防切割纤维Dyneema Diamond 2.0,可达3倍于标准UHMWPE纤维的抗切割性,且在相同的切割保护等级下,其厚度比普通纤维薄40%,减轻30%。


近年来,得益于UHMWPE纤维良好的导热性能,东洋纺公司推出了更多凉感织物方面的产品,其ICEMAX系列织物产品的接触凉感达到了普通纤维材料织物的两倍以上。


国内该技术由中国石化仪征化纤公司实现产业化,产品强度可达到30cN/dtex以上。近年来,上海化工研究院有限公司研发建成干法纺丝中试线,在进料系统、溶剂脱除系统、超倍拉伸以及溶剂回收等方面具有一定特色,纤维强度目前可达到38cN/dtex以上;2019年,该技术在国内实现了产业化转化。


近年 , 随着各地环保要求的提升,特别是UHMWPE纤维军民融合发展,高功能产品的需求增大,干法路线的优势日益增强。


(3)干法路线关键工艺技术
UHMWPE树脂的分子量、粒径分布是影响纺丝的关键技术参数。树脂分子量高、粒径分布窄、溶胀比大,所得纤维力学性能好;树脂在十氢萘溶剂中溶胀过程对于纺丝溶液均匀溶解至关重要,树脂不同溶胀状态喂入挤出机,对挤出机的压力、扭矩及熔体终挤出的状态有较大影响。


纺丝溶液均匀下料是影响纤维纤度的关键,由于十氢萘黏度较低,常规的溶剂-溶质悬浮液体系容易引起聚乙烯树脂的沉降,这在连续化的工业生产上更为突出,严重影响产品的稳定性。


研究人员通过改进溶液进料搅拌和溶液循环形式等提高纺丝溶液的均匀性。初生纤维中溶剂的充分挥发是影响溶剂回收和纤维力学性能的关键,干法路线中,冻胶纤维经过喷丝板挤出,利用惰性气体将溶剂带走,实现溶质与溶剂的两相分离,然后冻胶纤维在甬道内进一步拉伸,继续溶剂分离和大分子链结晶。


与湿法路线相比,目前国内产业化的干法路线冻胶过程不充分,这是导致干法纤维性能与湿法纤维存在差异的关键点。


本文作者课题组通过设计两段式的气体吹扫,使熔体冻胶化,保留纤维内部的解缠结构,保证了纤维后纺拉伸的有效性。超倍拉伸温度、拉伸比和拉伸速度是影响纤维结晶和力学性能的关键因素,随着纤维拉伸倍数的提高,纤维的取向趋于完善,其力学性能也随之提升 。


但拉伸倍数不能太高,过高的拉伸倍数反而会破坏纤维的结晶结构从而导致纤维强度的下降,通过剖析纤维在拉伸过程中微观结构的变化,调节拉伸倍数,纤维强度可达35cN/dtex以上。


目前,干法路线在国内还有较大的发展空间,一方面工艺路线可继续优化升级,如通过改善冻胶形式进一步提高纤维的力学性能和稳定性,通过提高纺丝溶液浓度和纺丝速度增大单线产能,同时通过简化流程降低产线的投资和运营成本;另一方面,干法纤维具备的光泽好、手感柔软、溶剂残留低等优势也将为纤维在医用、家纺、个体防护等领域的应用拓宽道路。


2.2 湿法路线纺丝
(1)工艺特点
目前常见的湿法路线流程如图2所示,与干法路线相比,湿法路线采用的纺丝溶剂为高沸点不易挥发溶剂,如白油、矿物油、煤油等,纺丝加工温度可调节范围大。纺丝溶剂需要在纺丝后期进行萃取和干燥,常用萃取剂主要有碳氢清洗剂、二氯甲烷、二甲苯等,纺丝溶剂回收工艺经十余年的产业化发展,相对简单成熟,但环保、安全的压力较大。


(2)国内外新研究进展
湿法路线是目前国内外纤维企业用得更多的一种工艺技术路线,是1985年由美国Honeywell公司购买DSM专利后进行产业化生产,推出的纤维牌号有 Spectra-HT、Spectra900、Spectra1000 等系列产品,其中 Spectra-HT 牌号断裂强度可达40cN/dtex。


另外日本三井公司于1988年正式商业化生产UHMWPE纤维,牌号为Tekmilon,产品重点放在作业手套、钓鱼线和缆绳市场。我国于20世纪80年代开始相关研究,并于2000年左右实现产业化生产,目前国内湿法生产企业有同益中、爱地、九九久、中泰等十余家公司,可生产不同旦数、强度的军民用纤维产品,占全球产销量的60%以上,但以中低端产品为主,产品价格竞争激烈。


传统的湿法路线由于工艺的先天性缺陷,导致产品质量的稳定性受到影响,特别是纤维旦数的偏差率普遍较高,优化现有的工艺路线,进一步提高纤维的力学性能、稳定性、功能性是目前湿法路线研究的重点。


(3)新型湿法路线
国内传统的湿法路线前纺止于冻胶纤维落入盛丝桶处,称为冻胶断点,新型湿法路线前纺则止于初生丝萃取后的一级或二级拉伸之后,称为干燥断点,如图3所示。



冻胶断点的优势在于冻胶纤维进入盛丝桶后,一部分溶剂析出,减轻了后续萃取的压力;前纺过程短,操作方便;然而由于盛丝桶冻胶丝堆积等原因导致纤维各段粗细偏差大,对后纺纤维的超倍拉伸、成品纤维力学性能提升等均有较大影响。


干燥断点有效避免了冻胶断点法的缺陷,虽然其对装备精度要求高,萃取压力较大,但随着加工技术的进步和纤维行业对更高性能纤维的追求,干燥断点法将成为后续湿法路线研究和产业化的热点。


(4)湿法路线冻胶纤维萃取工艺
冻胶纤维的萃取是基于双扩散机理,当冻胶纤维置于萃取剂中时,由于溶剂与萃取剂之间存在明显的浓度梯度,这就为相互扩散和渗透提供了动力。萃取剂属于小分子、低沸点结构,很容易渗透进入冻胶纤维的大网络结构,与原溶剂形成互溶混合体系。


目前常用的萃取剂有碳氢清洗剂、二甲苯、二氯甲烷等,国内传统的萃取剂多以碳氢清洗剂为主。碳氢清洗剂毒性低,然而闪点也低,容易引发火灾,近些年来使用开始减少。有研究表明,不同萃取剂对冻胶纤维的萃取效率依次为:正己烷>二氯甲烷>汽油>二甲苯>二氯乙烯>四氯化碳,如表3所示。适当的增加超声处理,萃取速率会提高。


2.3 熔融路线纺丝
(1)工艺特点
UHMWPE熔融路线是将聚乙烯或改性聚乙烯原料直接熔融后通过喷丝孔挤出并冷却得初生丝,再对初生丝进行多级拉伸提高纤维的分子链取向度和结晶度以制备高强或中强纤维。工艺技术路线如图4所示。



(2)国内外新研究进展
熔融路线具有工艺简单、不需要大量溶剂、生产成本低等优势,备受国内外研究者及企业关注。据报道,日本东洋纺公司已于2008年成功研发高强防切割熔融纺聚乙烯纤维Tsunooga TM 并实现工业化生产,目前东洋纺公司具有3条Tsunooga TM 纤维生产线,总产能约 1500t/a。Tsunooga TM 纤维与芳
纶、聚酯、尼龙纤维的性能对比如表4所示。


针对熔纺的研究主要集中在纺丝原料改性、纺丝工艺技术等方面。美国Honeywell、北京化工大学、中国石化集团公司等机构先后公开了UHMWPE与HDPE共混进行熔纺的研究报道,上海化工研究院有限公司运用新型的改性树脂,优化纺丝取向及拉伸工艺,实验室制备了熔纺纤维。当然,国内关于UHMWPE熔纺还处于技术开发阶段,距国外还有一定差距。


(3)纺丝原料改性
采用新型催化剂体系或原位聚合法从催化聚合阶段对UHMWPE树脂改性,可制备满足熔纺的具有特定分子链结构的树脂或在分子尺度上混合均匀的复合改性树脂。东洋纺公司采用重均分子量为30万以下、M w /M n <4.0的支链的聚乙烯进行熔纺,制备出强度为15cN/dtex的聚乙烯纤维。


当然,在UHMWPE树脂中添加流动性好的中低分子量聚烯烃或者流动改性助剂是方便且实用的方法,往往相容性好的体系具有较好的可纺性和纤维综合性能。


(4)纺丝装备及工艺改进
熔纺制备的UHMWPE纤维强度只有干法或湿法路线纺丝纤维的50%左右,一方面是熔纺采用树脂原料分子量相对偏低,末端缺陷较多;另一方面是熔纺纤维的大分子链没有充分伸直,而且伸直链的结晶度低,单斜晶取向度低,纤维结构不够致密。冷却速度、纺丝速度、热牵伸加热介质等工艺参数是影响UHMWPE熔纺的关键因素。


有研究发现在85℃条件下是较适宜的拉伸温度,且加入一定量的HDPE树脂,可提高共混纤维的结晶度、晶体取向度和分子链取向度,使晶粒更加细长,起到了改善共混纤维微观结构的作用。
分享到:
点击次数:1050  更新时间:2022-08-26  【打印此页】  【关闭